| ncor por ating Highlighting Animationsinto Static Visualizations

Jonathan Woodring and Han-Wei Shen
Ohio State University, Columbus, Ohio

ABSTRACT

Rendering a lot of data results in cluttered visualizatidtis difficult for a user to find regions of interest from certual
data especially when occlusion is considered. We incotpa@maimations into visualization by adding positional rooti
and opacity change as a highlighting mechanism. By levegagiur knowledge on motion perception, we can help a user
to visually filter out her selected data by rendering it wittinaation. Our framework of adding animation is the aninatio
transfer function, where it provides a mapping from data amidhation frame index to a changing visual property. The
animation transfer function describes animations for gedected regions of interest. In addition to our framewark,
explain the implementation of animations as a modificatibthe rendering pipeline. The animation rendering pipeline
allows us to easily incorporate animations into existinfjvgare and hardware based volume renderers.

Figure 1. Animation of the opacity of a foot data set.

1. INTRODUCTION

Given a visualization, our goal is to allow the user to rers##ected focus data in context with an entire data set. Auxidit
ally, we want to render the focus data and the context datasiatitar level-of-detail. The reason that we want to render
both selection sets is to allow the user to see how data caniygdween focus and context values and positions. The main
problem is visual clutter and occlusion occurring from theoant of data that is rendered at once. This is particul&wdy t
case in multi-field rendering where many volumes are contbiogether into one visualized volume. Also, user confusion
can occur when she is not able to tell what data belongs todheet®on set or which is the context data. The user may not
be able to even find her data selection in the visual search.

We need some method to highlight user selected data in cbntith the rest of the data. To reduce visual clutter
and emphasize regions, the current method of highlightatg t to reduce the opacity of surrounding data and ramp up
the opacity of the selected data. This violates one of owirements where we wish to render the context at the same
level-of-detail. An alternative is that we can use the ctdansfer function to highlight selected data values. W tfest
we can do better than this for the color channel is alreadyloaged in usagé.?

Furthermore, using the color channel for highlighting does address occlusion problems. Current visualization
techniques solve occlusion problems by reducing the anafusfaita that is rendered at once. This is done by completely

Jonathan Woodring: woodring@cse.ohio-state.edu Han-Wei Skesitem@cse.ohio-state.edu

removing the occluding data in question, through cuttirenpk and opacity reduction. This again violates one of our
requirements where we wish to show the contextual data Wwélidcus data.

We explore other avenues for highlighting rather than usiagjc opacity reduction or color transfer function manip-
ulations. The human visual system has evolved such that weasily perceive motion and change in our environment.
Even at a standstill, we use self-motion to get a better wtaleding of our surroundings. We currently use animation in
visualization for time varying phenomena and it is quiteunaitto use in these instances. Users can observe time cigangi
features that might not be immediately apparent from a setatic images, but become overwhelmingly obvious when
the same set of images are seen in an animation. We feel thrtrhmotion perception capabilities are underutilized in
visualization.

Figure 2. Two frames of an animation where a selected region in the data set nroweslan a circular fashion.

Figure 3. The opacity of the data set changes over the course of an animatiealingvthe data that the user is interested in.

In Figure 2, we can highlight a region of data the user is @gtyd in by moving the selection on the screen. Motion
helps highlight objects by making them stand out, and the cese immediately find the data she is interested in. If this
was a static image, it might take some time for the user totéottee regions that satisfy her query. This speeds up the
visualization interaction time because motion is preditenand it immediately pops out to the useA simple analogy
describes this: a deer that stands still in a forest is hasdégbut once the deer moves it becomes immediately ob\ious.
particular, Bartram et al. noted in a study on using motion fiker, that some users stated that non-moving entitids “fe
out” of the frame?

Furthermore, the user might not be able to locate the regidtieut motion all because of clutter, blending, and
occlusion. As a side-effect of moving data, studies havevsttbat the user can make better decisions when given spatial

data in motion, rather than using only static perspectivven static stereo renderifdhe change in lighting and shading
through object movement and light movement can be key parakindicators for shape and curvatdré.

We can also animate the opacity function so that intereséggns are revealed. Figures 1 and 3 are examples where
the data that the user is interested in is held at a constacttgpwhile the rest of the data set has its opacity flucthatesr
the course of the animation. By interactively revealinguker selection over time, she can get a sense of how heriealect
relates to the context of the data set. This is along with fe actually being able to locate her data by deoccluding it.

The unifying concept in our approach is an animation tranfsfection (ATF), which is similar to a color transfer
function. The ATF maps data and animation frame indices &mghng visual properties. To incorporate animation into th
visualization, the user chooses different data regionsafiyevor space, and also selects the animations that aredppli
the data regions. As the visualization animation elapsesposition and/or opacity of selected regions change awey, t
providing highlighting through animation. Our ATF frameskalescribes how the mapping of the animations is performed.
For the implementation, we show how we can change the visaiadh pipeline to incorporate our highlighting animagon
into visualization. This change to the rendering pipeliaa be easily incorporated into existing implementatiorthouit
radical redesign of the pipeline.

2. RELATED WORK IN VISUALIZATION

The basis of augmenting visualizations with animation md¢ethe transfer function. Transfer functions in visudiaa
were first detailed by Levoy.Our transfer functions will utilize an additional input paneter, in addition to a data point,
which is the index for an animation frame. Data vectors andhation frame indices will map to visual property vectors.

There are numerous papers related to animation in scievisfi@lization, and it would be difficult to list all of them.
Most are related to time-varying visualization and the sregion of animation. Some past research has used animatio
in visualization outside of time-varying data. ISA, IBFV&hd related techniques developed by vanWijk and Laramee use
animated textures to show flow in vector fiefiReeves introduced particle systems, which has been usettalsraque
for visualizing vector fields through the animation of psiand point sprite3.Lum and Ma have used particle animation
to generate visualizations that show structure and shape\visual motiont®

Recently, there has been an interest in the role of pereeptiscientific visualization. Weiskopf recently examined
the use of color and perception in motibh. Huber and Healey performed a user study on the perceptionotibm
in visualization in relation to flicker, direction, and velty.1?2 Related to our work, Correa and Silver created transfer
functions that animate a path or data set travéisdhe technique locally alters the transfer function duringration to
highlight features such as vascular flow.

3. BACKGROUND INFORMATION IN MOTION AND PERCEPTION

In order to justify our work, Bartram and Ware have a multgwdf studies showing the use and effectiveness of motion
in information visualizatiot* Motion can enhance visualization for multiple reasésst® Motion is perceived at a low-
level that is done in parallel with other perceptual taskss preattentive such that the perception does not taketareac
mental effort.

Other graphical channels have a finite levels of granularnity they are already overloaded with informatlohOnly
about 7 to 10 color hues can be fully distinguished in theavafoveal range of vision. Studies have shown that color and
shape are not easily conjoined for representation of vakms the search time can be significantly incredée®n the
other hand, Nakayama and Silverman showed that motion @ampgnoving elements together allowing users to search
moving groups individually® This would allow users to conjoin search, such as looking#aticular colors in a moving
group. In examining moving objects for a particular shapeabor, the search is linear in the number of objecté Driver
et al. also had similar results, showing that objects carrbepgd together using coherent oscillating motion past&tn

By using motion as a filter, selected values with motion w#lnsl out® We are mostly shape and color blind outside
of our foveal rangé? 2% The use of motion allows objects to be more readily detectaside of the fixation area. In a
study where there were different types of alert mechanisnasrhain task, motion is detected at a quicker response time
and with fewer errors, compared to shape and ctic?.

Motion also helps in determining form, such as shading charigrough movement can be used to interpret shape and
curvature>® The kinetic depth effect allows us to determine structure stmape through the movement of an object in

space™ In a study where users had to make decisions about 3D grdghgraphs in motion with perspective rendering
had fewer errors and quicker response times than statipgeiige or stereo views.

There is guidance on what types of motion are appropriatenplsi motions are preattentive, while more complex
motions require effort to filter moving objecisDifferences in detection and error rates are based upomtipéitade of
the motion, while phase and frequency have no apprecialgletaf-2° There is evidence to support that there is granularity
in the frequency of the motions, where up to four to six fraggies can be distinguished. There is a practical granylarit
of two in phase difference where motions with 90 degree pheseasily distinguishable from each othér:2°

4. ANIMATION TRANSFER FUNCTIONS

The animation transfer function framework supports mampgsyof change in visual appearance beyond motion, such as
change in color, texture, opacity, and lighting. We willrparily focus on animating position and opacity after weddtice

our framework and pipeline. Animations for the paper candoated ahttp://www.cse.ohio-state.edu/~woodring/ATF

and the use of motion and opacity animation is described a&tea bection. Please forgive the quality of the animations.
The animations were generated by a prototype system wittesteaeighbor filtering, so the animations may seem grainy
at times. Additionally, the capture system to record the iemalso interferes with actual frame rate of the the redksys

A transfer function maps points from one space to anothecespdhe most familiar of these is the color transfer
function where there is a mapping from computational spaceotor space. This is usually implemented as a color
lookup table. In rendering, there is also an additionalallgumplicit, positional mapping from data coordinatesstreen
coordinates. This can be thought of as a positional trafigfietion or space transformation. To support animationyille
provide an animation transfer function. The animationgfanfunction will partially replace the opacity or classé#iion
transfer function and the positional transform. Later, wiédescribe how to incorporate our highlighting animasahat
do not create a complete reimplementation of a renderinglipip

The ATF is a functionA, that maps a data set vector, represented by a funbi&j and a animation frame inde;,
to a visual property space, a vectgrséen in the following Equation D(X), parameterized by, enerates vectors that
represent the data values of a data set, such as field vatles,apacity, position, gradient, ete, the mapped vector for
a particularD(X) andt, can have many different animated attributes, such as,quisition, and opacity. It represents the
appearance of data on a particular animation frame. We anéhhe ATF generate opacity and positions for data values
so that we can provide motion and opacity animation. Thismadlaat the vectov is a two-tuple containinga, p) where
ais the alpha value angis the position for a data poifit(X) at animation frame.

A(D(X),t) =V=(a,p) (1)

An example equation that animates the opacity for regiondeaseen in Equation 2. The user specifies what values are
to be animated, which is incorporated into the ATF desaiptiFor example, the user can select a data value range based
on abox function. Those values of interest will have the same arianadpplied to it so that we provide a highlighting
mechanism. Our ATF design for this animation will be thah# tlata set value is within the ugsx function, then we use
opacity of the data poirlD(X).a as the output opacity. Otherwise, if a data point is outsfd@®box function, its opacity
is modulated by a sine function. The sine function is parenmdd by the animation frame index to create our animation.
The function will smoothly and periodically increase and¢mase from one to zero to one, scaling the original opacity.
Regions that the user is interested in, contained ilbtxefunction, will have a constant opacity, and all other regiawuill
fade into and out of view. We do not animate the position is ths§tance so the position of the data point remains the same
asD(X).p in the output vector.

A(D(X),t) =if :box(D(X)) =0 (2
a

Now we will show an ATF example that generates positionaliomoin a visualization. Equation 3 causes selected
values of interest to orbit in planar circle around theigaral position. Like before, in this example, we let a usefirade
a region of interest throughtaox function. If a value is not a selected, being outside bba function, then its position
will not change during the animation. We will use the inpusition of a data point for the output position for the funatio
in that case. Otherwise, when value is within tiex function, we give it motion by animating its position. Theginal
position of the data pointD(X).p, is offset by a animated vector that is a point that moves ifaagy circle. This is
generated by sine and cosine functions that are paranmeddrizthe animation frame index. As the animation progresses
it creates a circular offset pattern. Our actual implemtgnidor circular motion is more complex than Equation 3, dnese
we provide view aligned circular motion.

A(D(R),t) =if : box(D(R)) = 1 3)

5. ANIMATION PIPELINE

We do not change the opacity of a point in the above case, darvelichange the position of a point at the same time of
animation of the opacity. It is possible to combine the twim ione animation, by joining the two ATFs into one ATF.
Furthermore, it is possible for the user to define multiptgars of interest, and have different animations for eagiore
This leads us to our discussion on how to combine our animsatiath a practical implementation in our visualization
pipeline. The previous section has given us a framework entbcanimate data. Like with color transfer functions, we
have a mathematical framework in describing how a transiiectfon works, but the actual implementation in the pipzlin
is usually performed with a color lookup table.

5.1. Single Field Animation Pipeline

Figure 4. An opacity transfer function for a data set is split into two separate furetiased on the user selection. A split opacity
function defines the data points that have one user defined animation.

To explain our rendering pipeline, we use an example witlglsifield data where the user selects one region of the
data she wishes to animate, either by position or by opaaihich remains there is some data that is not animated, so that
there are two data selection regions. We assume that tharepiacity function that determines the opacity for datasoin
in the data set.

For our example, the opacity function is separated into tpacdy functions by the user selection, as seen in Figure
4. A split opacity function corresponds to the user seled@d portion and the animation on the selection. Every data
point will be sampled multiple times, once for each animatefined, but will only appear once in the final render. This
is because we have separated the opacity function by awinsaéind every data point only has positive opacity in one
separate opacity function. Another way to think about thihat by dividing the opacity function, we split the datauwak
into separate rendered volumes which can be animated indeply and composited together.

In our example, for the first split opacity function, the sl data points retain their original opacity value, while
all other points are set to zero opacity. To create this, fhecity function is modulated with the function that defines
the user selection to mask out the portion that is not anidnatéis creates one volume for that animation. In the other
opacity function, the converse is true. The remaining [goit selected by the user have positive opacity and thenmest a
transparent, which rendered is the volume containing thieofethe data.

data data

:
P
O

Figure 5. The traditional rendering pipeline is seen on the left. Data is sampled, theasaloopacity transfer function is applied for
each sample, eventually resulting in a visualization. To support animat@split the opacity transfer function into different regions of
animation, do multiple samples at a point in space, and applying animatioohdheasamples.

During rendering for our example, the data is looked up twiben sampling a region in space, once for each animation
or opacity function. An example figure of our modified visaation pipeline is shown in Figure 5 on the right, where the
traditional pipeline is shown on the left. We have divided tpacity transfer function into regions of different typds
animation, which in this case divides the volume into twouwoks. The animation that is defined for a data selection is
applied to the corresponding sample which results in anmmgahat volume portion.

Our main reason for dividing the opacity function is so thalyodata points that have a selected animation will a
positive opacity for that animation. For each animationananate the position of the entire data volume, moving atda
points for an animation. The data points that are selecteaotee by that animation have positive opacity, while all othe
samples are transparent. Therefore, we mask out the daits ploat do not correspond to a selected animation and only
the region the user has selected is animated.

For opacity animation, we only need to animate the corredipgnseparate opacity function. In our example with the
two color samples for the two animations, they are compasiigether to generate one sample at a point in spaééBy
doing this, we perform 3D composition of the animated volyudions, rather than 2D composition of images, to provide
correct depth occlusion in the animation.

This can be extended to multiple animations simultanepbglgegmenting the opacity transfer function into multiple
opacity transfer functions. Each one of the separate gphwittions corresponds to a user data selection and awimati

of that region. We perform a data sample for each opacitytfoncso that if there ardl animation regions then there are
N opacity transfer functions and samples at a point in space. The animation is applied for santple and all of the
samples are composited together for one final sample.

5.2. Multi-variate Animation Pipeline

A B

Figure 6. We have two data fields for multi-variate data, where the user wishes tof@ldvwA with color and animate regions based
upon field B. Field A has a color and opacity transfer function, while fielcaB & constant opacity transfer function defined on it. The
animation of field B segments B’s constant opacity transfer functionpgadity samples taken from B are used to modulate the color
and opacity of A.

We make a slight modification to our pipeline to support aiomefor multi-variate, time-varying, or comparative data
where one field is represented by the color channel and arfagltkbis represented by motion patterns or opacity animatio
Examples of this can be seen later in Figure 8 and 9. For oumgbeain Figure 6, we have two data fieldsandB. The
color transfer function is used to represent the values &uhlize fieldA. We will use the data in fiel® to animate the
appearance of the field. This way the user can see the conjoining of valueé ahdB, through motion and color. By
inspecting animated data points, a user can see valug®ynan animation pattern with the colors that are the values of
A. The color transfer function and opacity function for fiéldn the animation pipeline does not change as it is defined
by the user. For field, we define an opacity function of one for the entire field, whik separated into multiple opacity
functions for animation.

We need to perform the positional animation that is defineB &r A. If we do not apply the positional animation on
A, thenA does not appear to move at all. We have to positionally amiiyas much a8 is moved, because values Bf
are shown by the movement Af We are applying a motion pattern from the value8aind transferring that to animate
the apperance of field. We sampléA to obtain a color point and samples are taken from field obtain an opacity point.
Likewise, the positional or opacity animation is appliedhe sample fronB. The opacity samples taken from fidbdare
then modulated with the corresponding color sample takam field A.

The modulation of opacity taken froBwith the color ofA creates an intersection volume. For our example, we are
intersecting two alpha volumes froBwwith the two color volumes obtained frof The alpha volumes d are created
from the separation dB’s opacity function by the animation selection. This opgacitasks the animation of the color
volumes fromA with the alpha volumes frorB. This is so that\'s animated appearance is only done with the selected
data points specified on fiel Like the single value animation, we composite the samplgsther to form one sample at
a point.

[}
[}
[
[
1
1
1
)

ammm———
.

Figure 7. The selected skull region of the head moves in a circular motion, theigbligihting the region of data.

6. MOTION HIGHLIGHTING

For highlighting using motion, the user makes a query by shngpa data range or spatial range of interest. The selected
values are animated through the animation pipeline, as iseEigures 2 and 7. Compared to a static data set without
animation, the motion allows a user to find values withouraftiag because the data pops out to the Bs@ue to
perceptual mechanisms, the selection that is in motion eaaxhmined independently from the rest of the détahis is
because the motion provides a low-level visual filtering graliping of moving and non-moving elemed#sThe filtering
gives the user a focus + context visualization support ob&lection, as she can compare the selection with the res¢ of t
data.

Figure 8. A value range in a previous time step (not shown) is animated in this time stépshows where the data value occurred in
the previous time step in relation to the current time step.

The user can use animation so that it highlights the diffezemetween two data sets. For example, the user may
compare two different simulation runs of the same initiahdition or two different time steps in one simulation. An
example is shown in Figure 8 where the user selects a valuge riana previous time step. The corresponding spatial
locations in the currently visualized time step are animhdateshow the correlation. Through the motion animation, the
user does not have to visually search for the correlatingtpdiWhen there are dual viewports showing two comparative
views, the data can be animated in both views. When animatiegaoints in both views, the points would be visually
grouped together perceptual§. The user is then able to examine the differences and sitiésfietween the series of
points in both views, and she is able to ignore the contextata not in motiort8

Motion can also be used in highlighting multi-variate anddivarying data set analysis. Given a data set with several
fields of information, one data field or time step can be degidty motion or animation of the data points to highlight

Figure 9. A two variable data set that has a pressure component and a cloudcoowgonent. One variable is shown in color, while
selected ranges in the other variable have motion.

that data. For example, in Figure 9, it is a data set with clomeer and pressure values. The pressure is displayed via a
color transfer function. Cloud cover value ranges are shmyanimation with different motion patterns. For exampieg o
cloud cover range has an oscillating up-down motion, andhemnagange has a left-right motion. Since color and motion
can be conjunctive, the user can find data points that satatfy channels of informatiolf. Users are able to accomplish
this by highlighting the region of interest with motion. Theéner visual capabilities are able to perceptually filter ane
moving group corresponding to a value radgé€. From the data that is in motion, the user is able to examinedhas

for a movement pattertf. For example, the user could examine the up-down patteresponding to one particular cloud
cover range, perceptually separating it from the contetd.dBhen from that selection range, she is able to examiné wha
pressure values are within that cloud cover range.

7. OPACITY HIGHLIGHTING

One of the biggest problems in scientific visualization islosion, because much of our data is three dimensional.u©ccl
sion is a particularly a problem when combining multipleuroks together for multi-field and time-varying data $été?

By animating the alpha channel, we can provide an animateasfe context visualization, as seen in Figures 1 and 3.
The user is interested in a particular data value range oddle set, but cannot see that value range fully or at all due to
occlusion. Instead of completely removing the occludintadae are able to show the data selection in relationshipeo t
rest of the data set by animation. The opacity values fooregthat are not the focus of the user are faded in and out of
view over the course of animation. The period of the changebesaltered to the user’s liking determining how long she
sees the entire data set, the focus values, and the lendib tBinsition between the two. This animation allows the use
to see the selected values, but also get a sense of how @gétathe rest of the data.

8. IMPLEMENTATION

Our test software is written using OpenGL 1.5 and the GLSL ARBment shader extensions. The hardware used is
an AMD Athlon 64 3500+ with an nVidia 6800 GT 256MB. The franaeas varied from 5 fps to 20 fps depending on
whether real-time shadows were enabled and the level of z@wmrendering speed is limited by the fill rate and texture
memory size of the graphics card, and not by the animatioria Bet sizes used in our tests ranged from 128x128x128,
256x256x64, to 128x128x64, with one or two variables. Thewe rendering algorithm uses view aligned quadrilaterals
and 3D texturing hardware. Up to four texture units are usett to two for the data set and normals, one for the
accumulating shadow buffer, and one for the color and opac#ps. The user selects a data range and and the type of
animation to be applied to the selection.

The animation is mostly performed by the graphics hardwaréng the fragment processing stage. The techniques
either use texture transform manipulation (position higiting) or dependent texture lookup manipulation (opakigh-
lighting). For example in opacity highlighting, the sepeachtransfer and opacity functions are uploaded as a depende

texture. On every frame, the opacity transfer functionteral for effected regions and re-uploaded to the graplaas-h
ware. This causes the selected regions to fade in and outwfhy animation, by looking up the opacity in the dependent
texture, which is animated by the CPU and uploaded to thehigamardware on every frame.

When using positional motion to animate, simple, rigid magiare supportédwhich makes it easy to implement
using texture matrices for positional offset sampling. tliex transform manipulation is used to implement rigid posal
motions of the data this way. The opacity transfer funct®separated into different motion regions. Motion on each
frame is stored in one of the multiple texture matrices amaearse offset mapping from the slicing quadrilaterals to 3D
texture space. For a selected motion region to move, thereeiktansform for a regiorg(M atrixM ode(GL _TEXTURE))
is changed according to the user’s desired motion to hightigat data. The user’s selection is masked by the separated
opacity functions, and the actual motion is implementedshy TEXTURE matrix updates on every grame. So we are
changing a transformation matrix on every frame for the hi@phardware to implement positional highlighting.

The new texture matrices are passed to the vertex progranadnfeame, one for every motion type, from which
it generates multiple texture coordinates for a vertex. Wiaesterizing the slicing quadrilaterals, the fragment paoy
performs multiple texture lookups for the animations onvtbkime data to acquire separate sample points. It performs a
dependent texture lookup for each of the data points to gatdlor and opacity for every animation. The multiple saraple
are composited together to form the final fragment, which tm&ajrom multiple data points overlapping in space due to
positional movement.

To determine the final fragment color, from the separatectiopfunctions or user defined regions, we use alpha
blending to combine the multiple samples together. Thiealise for every fragment, we sample the voluhienes for
X animations, and combine the results together. There isaendering pass, bt samples folX animations. Remember
from the previous section, a data point only has one animapplied to it. Even though a data point is sampled multiple
times, a data point only appears once in an animation becaug®ne sample has a positive opacity due to the separated
opacity functions.

In implementation, there is very little that has to be chahigethe visualization pipeline in either case for opacity
highlighting or position highlighting. This results veiitle data that has to be uploaded to the graphics hardwaegeny
frame. We do not have to manipulate the original data setymaay, just the dependent texture and texture transformatio
matrices in the hardware implementation. In theory, foryaaaster, we would only need to animate the opacity function
and provide offset to the ray(s) on every frame. We would riegulovide multiple rays (a bundle of rays) for the separated
opacity functions, and combine the results of the multiplest by alpha blending, like in the hardware implemenation.

Our implementation is viable for user interaction and réaletupdates. The ATF technique can also be used for
pregenerated animations, but we feel that it is more effedfithe user is allowed to turn off animations or switch to
different animation types interactively, while still bgiable to change other visualization parameters. When ithsigue
is layered upon other visualization systems, it is esplgcialportant that the user can interactively use the aniomati
mechanisms freely with other techniques that she is familith.

9. CONCLUSION

Motion and animation is a powerful technique that is undizet in visualization. The animation transfer functienoiur
framework that is used to add highlighting animations taaligation. It builds upon the concept of the transfer fiorct
where an ATF maps data values and animation frame indicdsatoging visual properties. In particular, we animate the
position and opacity of data to highlight data selections.N&\ve presented the framework of an ATF, but also the pedctic
implementation of it in the visualization pipeline. Thisplementation is easy to integrate into existing pipelirseg] is
capable of real time animation of the data.

We use the animation for rendering data selections in contigix the entire data. Through highlighting by motion, the
user can pick out regions that she is interested in and foctlkemm. This is because motion is preattentive and can make
things immediately pop out without seargtHighlighting by animation can also be used in multivariate @aomparative
analysis. Animation can also be used as a technique to detecaind highlight unseen regions of interest. By fading
context data out of view, the user can see the data she isstéerin and how it relates to the context of the entire data se

We have set up the general framework for animating statigalizations and there is room for future work in highlight-
ing through animation. Our implementation uses simplédngotions, which is supported by the perceptual litergture

but possibly more deformable motions may have use. In CamdaSilver’s animation$3 they use space, continuity, and
locality to enhance visualizations, and we would like tolerpthis avenue as well. User feedback may drive the animati
as well, depending on user interaction with the animatio previous frames of animation. Finally, transfer funcsion
primarily deal with local data values emerging into a glopiature. It may be possible to use global analysis to geaerat
animations.

1.

2.

3.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES

L. Bartram, “Can Motion Increase User Interface Bandwidt Complex Systems?,” iRroceedings of 1997 |EEE
Conference on Systems, Man and Cybernetics, 2, pp. 1686—-1692, IEEE Computer Society Press, 1997.

L. Bartram, “Enhancing Visualizations with Motion,” Proceedings of the |EEE Symposium on Information Visual-
ization, 1998, pp. 13-16, IEEE Computer Society Press, 1998.

L. Bartram, C. Ware, and T. Calvert, “Filtering and Intstimg Visual Information with Motion,” inProceedings of
I|EEE Symposium on Information Visualization, 2001, p. 2002, IEEE Computer Society Press, 66—79.

. C. Ware and G. Franck, “Evaluating Stereo and Motion Cae¥itualizing Information Nets in Three Dimensions,”

ACM Transaction on Graphics 15, pp. 121-140, April 1996.

. D. Akers, F. Lossasso, J. Klingner, M. Agrawala, J. Riakd & Hanrahan, “Converying Shape and Features with

Image-Based Relighting,” iRroceedings of |EEE Visualization 2003, pp. 349-354, IEEE Computer Society Press.

. L. Wanger, J. Ferwerda, and D. Greenberg, “Perceiving&@pelationships in Computer-Generated ImagHsEZE

Computer Graphics and Applications 12, pp. 44-58, May 1992.

. M. Levoy, “Display of Surfaces from Volume DatalEEE Computer Graphics and Applications 8, pp. 29-37,

May 1988.

. R. Laramee, J. van Wijk, B. Jobard, and H. Hauser, “ISA &8#MS: Image Space-Based Visualization of Flow on

Surfaces,1EEE Transactions on Visualization and Computer Graphics 10, pp. 637—648, November/December 2004.

. W. Reeves, “Particle systems—A Technique for Modelingps£of Fuzzy Objects,” iRroceedings of the 10th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 359-375, ACM Press, 1983.

E. Lum, A. Stompel, and K.-L. Ma, “Kinetic VisualizatioA Technique for Illustrating 3D Shape and Structure,” in
Proceedings of IEEE Visualization 2002, pp. 435442, IEEE Computer Society Press, 2002.

D. Weiskopf, “On the Role of Color in the Perception of Matin Animated Visualizations,” ifProceedings of | EEE
Visualization 2004, pp. 305-312, IEEE Computer Society Press, 2004.

D. Huber and C. Healey, “Visualizing Data with Motion' Proceedings of |EEE Visualization 2005, pp. 527-534,
IEEE Computer Society Press, 2005.

C. Correa and D. Silver, “Dataset Traversal with Mot@ortrolled Transfer Functions,” iRroceedings of IEEE
Visualization 2005, pp. 359-366, IEEE Computer Society Press, 2005.

C. Ware|nformation Visualization, Morgan Kauffmann Publishers, 2004.

L. Bartram, “Perceptual and Interpretative PropentieMotion for Information Visualization,” Technical Regor
CMPT-TR-1997-15, School of Computing Science, Simon Frilsdversity, 1997.

K. Nakayama and G. Sllverman, “Serial and Parallel Fysiog of Visual Feature Conjunctiond\ature 320,
pp. 264—265, 1986.

C. Ware and R. Bobrow, “Motion to support rapid intenaetjueries on node-link diagram#CM Transactions on
Applied Perceptions 1, pp. 3—18, July 2004.

J. Driver, P. McLeod, and Z. Dienes, “Motion Coherence @onjunction Search: Implications for Guided Search
Theory,” Perception & Psychophysics 51(1), pp. 79-85, 1992.

L. Bartram, C. Ware, and T. Calvert, “Moving Icons: Deimae and Distraction,” inProceedings of the IFIP TC.13
International Conference on Human-Computer Interaction, pp. 157-165, 10S Press, 2001.

L. Bartram, C. Ware, and T. Calvert, “Moticons: DetentiBistraction and Task/[hternational Journal of Human-
Computer Sudies 58(5), pp. 515-545, 2003.

J. Woodring and H. W. Shen, “Chronovolumes: A Direct Reimd) Technique for Visualization Time-Varying Data,”
in Proceedings of International Workshop on Volume Graphics’ 03, pp. 27-34, 2003.

J. Woodring, C. Wang, and H. W. Shen, “High DimensionakBi Rendering of Time-Varying Volumetric Data,” in
Proceedings of |EEE Conference on Visualization ' 03, pp. 417-424, 2003.

23. J. Woodring and H. W. Shen, “Multi-variate, Time-varyjrand Comparative Visualization with Contextual Cues,”
|EEE Transactions on Misualization and Computer Graphics 12, pp. 909-916, September/October 2006.

24. W. Cai and G. Sakas, “Data Intermixing and Multi-volurrenBering,” inProceedings of EuroGraphics’ 99, pp. 359—
368, 1999.

